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Introduction to In-host modelling and model design
Overview of Pathogen infection
Overview of immune system response to pathogens

What is our interest?

¢ To understand the general principles of pathogen infection
and immune system response mechanisms.
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Introduction to In-host modelling and model design

Overview of Pathogen infection
Overview of immune system response to pathogens

Pathogen infection mechanism (e.g. HIV)

RNA-DNA Hybrid
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Introduction to In-host modelling and model design

Overview of Pathogen infection
Overview of immune system response to pathogens

Pathogen infection co-receptors (e.g. HIV)
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Introduction to In-host modelling and model design
Overview of Pathogen infection
Overview of immune system response to pathogens

Basic Immune system response to pathogen

Innate (nonspecific) immune response
@ Innate (nonspecific) immune system response - first line
response.

e physical barriers - the skin,

® change in body environment - fever

* immmune cells - Macrophages, eosinophils, dentritic cells,
Natural Killer cells.

® Cannot specifically recognize the physical structure of
the pathogen sense and react to the presence of an

invader.
@ Slow down initial growth pathogen but insufficient to cle {”}«
an infection. el
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Introduction to In-host modelling and model design
Overview of Pathogen infection
Overview of immune system response to pathogens

Innate Immune response - eosinophils

sehistosome larda eosinaphils
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Introduction to In-host modelling and model design
Overview of Pathogen infection
Overview of immune system response to pathogens

Innate Immune response - phagocytosis
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Introduction to In-host modelling and model design
Overview of Pathogen infection
Overview of immune system response to pathogens

Innate Immune response - Natural Killer cell

matural killer call cancer ool
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Introduction to In-host modelling and model design

Overview of Pathogen infection
Overview of immune system response to pathogens

Adaptive Immune response

Antigen presenting cell

MHC class Il-peptide cumplex\

CDa+ helper T cell

©D8+ cytoltic T cell 4

.
# o * Cytokine secretion

T cell receptor

Blocking of HIV entry
\ g ' by secreted chemokines
Hiv-infecte

CD4+ T cell

MHC class |-peptide
complex

Speomc antibeg
ies
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Proteins
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Introduction to In-host modelling and model design
Overview of Pathogen infection
Overview of immune system response to pathogens

Basic Immune system response to pathogen

Adaptive (specific) immune response
@ Adaptive (specific) immune response - second line
response
® Immune cells have receptors to recognize physical
structure of pathogen
® Immune cells divide and expand - effectively fight the
pathogen - clearance may occur.
e CD4+ T cells - regulatory (helper)
e CD8" T cells- effector response - directly fight pathogen.
® B Cells - effector response - Neutralising antibodies -

directly fight pathogen.
@ Pathogens - have epitopes recognized by immune cell "
receptors - pathogen may have several epitopes. ‘ty
@® Multiple adaptive responses may be required for one i

pathogen.
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Designing a mathematical model
Formulation based on reaction networks
Stochastic version

Introduction to model design

What is our interest?

¢ To understand the general principles, assumptions and
basic techniques used in mathematical models for
infectious diseases within the host, appreciate the value
and limits of mathematical models and explore the
behavior of different models.
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Designing a mathematical model
Formulation based on reaction networks
Stochastic version

Introduction to model design

Mathematical model

e Mathematical model- a conceptual tool that uses the
language of mathematics to produce a more refined and
precise description of a system.

e - a set of equations describing the structure and interaction
of individuals in an area or region.

¢ Used to analyze experimental results and provide
predictions and suggestions for follow-up experiments.

e Can attempt to synthesize existing knowledge and provide
a theoretical framework for the interpretation of existing

paradigms.
¢ use of mathematical models instrumental in deepening 't}
understanding of infection.

u]
o)
I
ul
it

Prof. Faraimunashe Chirove fchirove@uj.ac.za University of Johannessburg, Dept. of Mathematics and Applied


mailto:fchirove@uj.ac.za

Designing a mathematical model
Formulation based on reaction networks
Stochastic version

Introduction to model design

Model types

Influenced by the scientific question of concern - research
question?

e Deterministic models
e Stochastic models

e Statistical models

® many more

® The more assumptions put into the model, the harder it is
to be confident about the conclusions

A well designed model can test different assumptions a
provide important new insights into questions that cann ‘{}‘
be readily answered experimentally. sty
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Designing a mathematical model
Formulation based on reaction networks
Stochastic version

Introduction to model design

Process of modelling

Real World Formulation Model
Questions? (Start with the simplest) _ Variables
- parameters
- interractions
between
variables and
paramters
Test
Analysis
Predictions/ Explanations Interpretation Mathematical |
- Conclusion *Wy
- results answer question?|
— Intrepret results UNIVERSITY
- describe potential possibilities JOHANNESBURG
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Designing a mathematical model
Formulation based on reaction networks
Stochastic version

Introduction to model design

Designing an in-host model

© Specify the State variables
® Specify the processes affecting the state variables.
©® Specify the process rates of the state variables.

@ Produce the dynamic equation specifying the state
variables’ change over time.
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Designing a mathematical model
Formulation based on reaction networks
Stochastic version

Introduction to model design

Model diagram - T helper cells only

Uninfected T cell (T Ininfected T cell (I
A /7 o N
/ /L
NS

Uninfected T cell (T) Ininfected T cell (I
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Designing a mathematical model
Formulation based on reaction networks
Stochastic version

Introduction to model design

In-host model with T helper cells only (e.g. HIV)

T = 7—uT =BTV,
.I = /81 TV — ([L-f-O[)l,
V = Nal—BTV —puyV.
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Designing a mathematical model
Formulation based on reaction networks
Stochastic version

Introduction to model design

Model diagram - T Helper cells + effector response

Uninfected T cell (T) Ininfected T cell (1)
by N B
L \ ;
o // *._Pathogen infection

Neutralizing ] "Effector response
antibodies(A) Virus (V)

Effector res i onse -

a i i#b

B cell (B)
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Designing a mathematical model
Formulation based on reaction networks
Stochastic version

Introduction to model design

In-host model with T helper cells + Effector response
(e.g. HIV)

© Cytotoxic T Lymphocytes (CTLs) proliferate - stimulated by
the pathogen.

® CTLs - fights the virus population (killing infected cells).

@ Virus - CTLs interraction similar to predator-prey
dynamics in ecology.

@ CTLs (predator) and pathogen (prey).
T = a7—uT—pBTV,
I = BTV —(u+a)l—hlC,

' !
V. = Nal—-pTV —puyV, \{W}‘
C = alC-pucC. =

Prof. Faraimunashe Chirove fchirove@uj.ac.za University of Johannessburg, Dept. of Mathematics and Applied


mailto:fchirove@uj.ac.za

Designing a mathematical model
Formulation based on reaction networks
Stochastic version

Introduction to model design

In-host model with T helper cells + Effector response
(e.g. HIV)
© CTL expansion saturates as the number of CTL grows to
relatively high numbers.
T = 7—uT =57V,

: helC,
I = ﬁ1TV—(,u-|-a)I—€C+1
V = Nal—=p5TV—uyV,
. alc

¢ = eC +1 —#eC.

@® Saturation already occurs at lower numbers of CTL
I = BTV —(u+a)l— helC,
C = helC— ucC.

[m] = = =
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Designing a mathematical model
Formulation based on reaction networks
Stochastic version

Introduction to model design

Modeling CD4 T cell help: CD4-APC-CTL pathway.

© CD4" T cell plus APCs = activated APCs.
® Activated APCs + CTLs = Activated CTLs = clonal
expansion of CTLs.

_. Y — 3 <<
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; . Designing a mathematical model
Introduction to model design ) :
Formulation based on reaction networks

Stochastic version

CD4-APC-CTL pathway reaction scheme

Let Th—CD4 T helper cells, A—APCs, T8—CTLs, *—activated
state, kj—reaction constants and n—number of new CTLs.

k-
Th+ A % ThA, 7)
2

ThA % Thy A", (8)
T8+ A" — T8A", (9)

T8A* & (n+1)T8+ A",
LAY T

UNIVERSITY
U NVEST
JOHANNESBURG

University of Johannessburg, Dept. of Mathematics and Applied

Prof. Faraimunashe Chirove fchirove@uj.ac.za


mailto:fchirove@uj.ac.za

Designing a mathematical model
Formulation based on reaction networks
Stochastic version

Introduction to model design

CD4-APC-CTL pathway reaction scheme kinetics

Let []—concentrations of cell types.

% = —Kk[A][Th] + ko[ ThA] + ks [A*],
% = k[ ThA] — ksl A*][T8] + ks[ TBA™] + Kks[ TBA"] — k[ A"],
% = —k[Al[Th] + k[ ThA] + k3[ ThA],
% = —ky[A*]|[T8] + ks[ T8A*] + kg(n + 1)[T8A"],
w = Kk[A][Th] — ko[ ThA] — k3[ThA],
d[T;A*] = Ky[A"][T8] — ks[T8A"] — ke[ TBA"].
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Formulation based on reaction networks
Stochastic version

Introduction to model design

CD4-APC-CTL pathway reaction scheme kinetics
simplifyting assumptions

e Kinetics of complexes [ThA|] and [T8A*] are fast compared
to the other reactions - they go to their quasi-steady states

ki
ThA] = Al[Th
[ThA] ot ks[ 1[7hl,
TeA] = . _[AT8]
k5-|—k6
{l
reducing the reaction kinetics to ‘{Vj’
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Introduction to model design

CD4-APC-CTL pathway reaction scheme kinetics
simplifyting assumptions

a4 ko

g = klATA [A][Th] + k7[A"],
dA*]  kiks . ka(ks + Ke) | ,s
d ket [A][Th] ka[AT][T8] + T[A ][T8]
—k7[A*],
dath] ki (ko + k3)
g - —ki[A][Th] + T[A][Th]
ars] . Ka(ks + ks(n+ 1)) .
gt = “hlAlTE] + s [A*][T8],
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Introduction to model design

CD4-APC-CTL pathway reaction scheme kinetics
simplifyting assumptions

% _ _kzk‘kS [AI[TH] + ke [AY],
% _ k:“k?’ AIITH] — kr[A"],
arh

@ 0

are) _ nkk4k6 AT,
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Introduction to model design

CD4-APC-CTL pathway reaction scheme kinetics
simplifyting assumptions

¢ Note that [Th] is constant
e Let T = [Th] + [ThA]— total number of CD4 T helper cells.

¢ Number of helper cells in [ ThA] much smaller than number
of free [Th] so that T = [Th] + [ThA]

diA]  kiksT .
T A RIAY
diA*]  kiksT .
i = s A kA
d[rs] ksks . ..
“a T sk ANT8L
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Formulation based on reaction networks
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Introduction to model design

CD4-APC-CTL pathway reaction scheme kinetics
simplifyting assumptions

¢ Note also that at quasisteady state

_ kT
[T8A] = = b AT
o Let Ac = [A] + [A*] + (80 [A] + 4 [A*][T8] - total
number of APCs.
a1 kik3 TAc
Al = Kk k[ T8]
7k + ko) + kiko T (1+ 150) + ki T
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Formulation based on reaction networks
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Introduction to model design

CD4-APC-CTL pathway reaction scheme kinetics
simplifyting assumptions

CTAC
14+eT(14+0[T8])+pT

ATl =

kiks

= — net reaction constant of APC activation.
ko + k3

® o= ks —proportlonallty constant for CTL-APC

ks +
complex "
ki . NS 4
° p= —proportionality constant for TH-APC complex ==
k2 + k3 JOHANNESBURG

ul
1l
S
pe)
i)

] = = =
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Introduction to model design

CD4-APC-CTL pathway reaction scheme kinetics
simplifyting assumptions

Let C = [T8] + [T8A*]—total number of CTLS.
The number of CTL in [T8A*] is negligible, then C = [T8]

¢ Proliferation rate of CTLs is given by
~eTA:C
1+eT(1+0C)+pT
=n Kake —net reaction constant for CTL activation
T s 1 ke | <5
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Designing a mathematical model
Formulation based on reaction networks
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Introduction to model design

CD4-APC-CTL pathway reaction scheme kinetics
simplifyting assumptions

e Assume that amount of CD4 help is constant, i.e. T is
constant. The proliferation function reduces to

QA Acc
as+ C

® Assume that amount of CD4 help is small and vanishes.
The proliferation function reduces to

~eTA:C

e Using the quasi-steady state assumption ks + k3 >> kq

and ks + kg >> ks, We can ignore o and p. The

. . . TA
proliferation function reduces to 71: €
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More insights from my work

HIV infection in CD4™ T cells and Other immune cells

e Langerhans cells - the skin epidermis, the anal and vaginal
mucosa, and the male foreskin.

e capture and destroy HIV or can get infected by HIV.

PV, BeL(Li+Ti)

L= N—mb=27 ALl (12)
T = W—MT—ﬁSL,’T—IB4TI—IB5TV, (13)
CBvV, lLtT)

I'= B3LiT + BaTI+ BTV — (u+ a)l,

v = Nal—¢—\/L—qu-

A+ L
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More insights from my work

Threshold analysis

To (BsalN (g — B2W) + B233W (jty + ¢W) + B1 530U N)
(1o + 60) (1 — 2 0) (1t + @ — BaTo) '

2 _
ml —_—
pand R? and write it as

R = Rrvorn + Rosron + RO SV oLoT.
TQS,-;(L’\“V
(o + @) (u + a — B4Tp)’
TU ;')72 / ‘}3 v
(1 — Ba0) (i + o« — B4Tp)’
TO ,"fl ,“f3(1 \II.."\".
(pro + O (g — B2 V) (n + o — B4Th)

Rr,svor, =

§RTz—) L;—T; =

§RT,—)V—)L,—)Ti =
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More insights from my work

Threshold analysis

oR? _ To(p — B4aTo) (B183Y + B5 (ju — B2V)) (N — NT)
o Ry (o +O0) (g — Bo) (n+a — BaTp)°

where
BafaW (p, + V)

3.11 Ny = - .
61D 17 (1= BaTo) (B1B3Y + Bs (i — A2 1))

The reciprocal of the expression u— (34T is the average infectious period for T; cells in
the absence of viral lysis (i.e., @ = 0), so we assume that g — 34Ty > 0. We formulate
a theorem on N and N7 as follows.

TurorEM 3.3. There is a threshold number N{, such that the following hold:

(i) If N < N{., Ry decreases with respect to cv.

(ii) If N > Nf. Ry increases with respect to cv.

(iii) If N = Nf. Ry is constant with respect to c.

Differentiating %2 with respect to ¢ we obtain

()?R% - ToaUN (Bs (1 — Bl + 31 830)

90 (i + &) (= Batb) (n+ o — BTo)

Prof. Faraimunashe Chirove fchirove@uj i i f Mathematics and Applied


mailto:fchirove@uj.ac.za

Simulations

More insights from

my work

Population Counts/mm®

ion Counts/mm”®

Prof. Fai

0=3 o=5
1800 1800
1000 —— Uninfected LC 1000 —— Uninfected LC
* Uninfected CD4'T cells * Uninfected CD4'T cells
- infected LC & e = Infected LC I
=== Infected CD4" T cells E 1200 Infected CD4" T cells [
e Froe Virus £ 1000 Free Virus
S
§
[
0 o
0 50 100 150 200 260 300 350 400 0 50 100 150 200 250 300 350 400
Time (Days) Time (Days)
o=7 0=9
1800
—— Uninfected LC - Uninfected LC
* Uninfected CD4"T cells *  Uninfected CD4°T cells
infected LC % oo = Infected LC
“Infected CO4* T cells E 1200 infected CO4° T cells
Free Virus § 1000 + Free Virus
S
§ 800 1
3
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More insights from my work

Simulations

£
S
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z2
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2
@
Q
o
T
Q.

Day 365
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More insights from my work

Summary

@ Established three subreproduction ratios,
(i) cycle from infected CD4+ T cells to free virus and back
to infected CD4+ T cells,

(i) cycle from infected CD4+ T cells to infected Langerhans
cells and back to infected CD4+ T cells, and

(iii) cycle from infected CD4+ T cells to free virus to
infected Langerhans cells and back to infected CD4+ T
cells.

@® Degradation effects of Langerhans cells are countered by
the opposing viral lysis effects.

® Focus on strategies that reduce the cell-free infection ¢
towards both Langerhans cells and CD4+ T cells as we ‘3:}‘
boost the degradation mechanisms of the Langerhans | ==
cells towards the free virus. Ce e
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More insights from my work

Incorporating constant treatment in HIV in-host models

prV, BeLLi+ Ty
A+L A+L
T = 7—uT—BsLiT —B4TI— 5TV — 02T,
. ~ B0 —dep)V  Bo(1 —dep)Lqg(Li+ Tj)
Ly = o1l —plq AT Ly Ly A+ Ly :
Ta = o02Tg—pTg—(1—e€r)(BsLi+ Bal + BsV)Ta,

bV, BLLi+ T)  Bi(1 - 56H)VLd

L = Ar— Ll — o1L,

L= ot —art A+ Ly
Bo(1 —der)La(Li+Ti) ,
A+ Ld (/JJ/ +p)Lla
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More insights from my work

Incorporating constant treatment in HIV in-host models

I = (BaLi+ Bal + Bs VYT + (1 der)Ty) — (1 + )1,

pV(L + Lg)

v = N(‘I—ep)a/-l—M(‘l—ep)pL,-—A+L+Ld
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More insights from my work

Threshold analysis

g2 — ) ) )
W=R, AR AR R
where R (1-¢y) Na®©, /5 Ry BBaN (I—EH)QG),.
T G, e 0,0, (40, +11)
€% _95509, 9% (1-64)0;0M (0,5,5,+0,5)
LT T 0.0 I-sL2V-sT — 0.0 O
bhe! 10, (60, +11,)
where, 6’:(1_&3”)(1)#@. 0, =T+ (1= )Ty,
O, =pu+a-pf(1-ey )le - AT ) 0, =t +p— (106 )0, ~ S
Ll L, — L1+Ld1 _ A1 T
= . D = O, = L= . ]; =
A+ L Y A+l A+L+L, +a; u+o,
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More insights from my work

Incorporating time-varying treatment in HIV in-host
models

© Pharmacokinetics - the kinetics of absorption, distribution
and elimination of drugs inside the body

® Minimum and maximum concentration of the drug
® dosage rate, half-life, time to max concentration
® Drug concentration at the site of action is the most
important aspect but not feasible to routinely measure

clinically
©® Plasma/blood concentration widely used - linear
relationship between plasma concentration and \{w},

site-of-action concentration.
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More insights from my work

Drug concentration

_ . _e—t
Cmin + (Cmax1 _Cenim'f)n(rlx € )7 t € [t, Tmax],

Cmaxe_k(t_TmaX), t S [Tmax, T+ t,]

Efficacy functions

\{W}f

UNIVERSITY
U NVEST
JOHANNESBURG

Prof. Faraimunashe Chirove fchirove@uj.ac.za University of Johannessburg, Dept. of Mathematics and Applied


mailto:fchirove@uj.ac.za

More insights from my work

Numerical experimentation

= — Nevirapine
Efavirenz
Delavirdine

Efficacy of RTls drug

b3
e
g
e
£
o
8
b4
a

— — Nevirapine
- Efavirenz
Delavirdine

35 4

. ﬁ_\__’/\‘_‘_ P H\,“_( e
0 05 1 15 2 25 3 35 4 05 15 2 25 3
(a) Time (Days) Time (Days)

60

— — Amprenavir
50 ~ o

-- Delavirdine
Ritonavir

Efficacy of Pls drug

— — Amprenavir
Indinavir
Ritonavir

15 2 25 2 35

Time (Days) Time (Days)

Dose of Pls drug (. M)
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More insights from my work

Numerical experimentation
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More insights from my work

Numerical experimentation
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More insights from my work

Summary

@ Periodic drug holidays are more effective if the time
duration of the drug holidays is shorter
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More insights from my work

Some connection of HIV in-host model and population
dynamics
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More insights from my work

Full linked model

dL

dt
dLt

dt
dL,

dt
dC

dt
dC,
at
dc
dt

T — (wA + p)L,
wAL—(p+7)Lr,
yLr — (p+ )Ly,
74 — (A2 + 114)C,

AoC — (14 + v4)Cr,
A
Y4CL — (pa + p)Cy, -
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More insights from my work

Full linked model continued

av
g = (1= (Gt 0)p(+mA) +p(1 = )MC;
+deNL; — (py + wal) Vgs,
av;
gt = (ot Qpell+mA) + pdMCi+ 6(1 = ONL,
—(pv +wal)Vxa,
%f — Ao—\sS—dbS,
adl
g = "S- (do+0)l,
dA

e Yol — (do + 60)A,
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More insights from my work

Full linked model continued

A = B1(Ves +n3Vxa +n2C) + n1Ly),

Ao = Po(Vxs +03VRs +02C) + o1Ly),

v~ P3(Vxa+ (1 — 1) Vas)(l +10A)
3 - N0 :

\{ij
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Balanced time scales for within host dy

More insights from my work

population dynamics

Prof. Fai

Equations with respect to fast
dynamics

Equations with respect to
slower time 75

L= —(wh + L

Ly =1L —(u+y)Ly
Ly=yLy —(u+8L;
C =4 — (A2 + pa)C
CL=2C — (ua +yCr
Cr =wnCL — (ua + p)Cp

Vs = ep(1 — (Ge + E))p
(I +n0A) +p(1 —p)MCy
+8eNLj—(puv+wal)Vps

Vxa = ep e+ o)pU
+n0A) + ppMCp +5(1
—&)NLj—(puy+wal)Vxy

S=¢g (A”o — i3S —Jos)

i=ep (x}s — (do + ;70)1)

A=ep (y'ol — (o + 5’0)A)

epl) =7 — (@A) + )L
eplly =1L —(u+y)Lr
eply =yLt —(n+8)L;
epC’ =1y — (A2 + pna)C
epCp = 22C — (g + y)Cy
epCp = yaCL — (4 + p)C

gbV,’aS =0 -G +a»pd
+10A) + p(1 —PMCy
+8eNLj— (o +wal)Vys

epVyy = Ce+EDpU +n0A)
+ ppMCr +8(1 —e)NLy
— (ny + waL)Vxy

S" = Ag — A3S — dpS

1" =38 — (do + yo) 1

A’ =yl — (do + 80)A

amics and
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More insights from my work

Simulations before and after linking

Simulations before and after linking
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More insights from my work

Summary

© Results suggest that ignoring the differences in time scales
may lead to underestimation of the impact of the infection.

® Within the host - there is potential to increase the viral load
whilst decreasing the CD4 count within the host.

® At population level- members of infected and AIDS
individuals increase.

@ The direct linking can also be used for all infectious
diseases that can be transmitted directly.
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More insights from my work

HIV Mutation within the host

@ HIV known for error-prone replication - mutation -
partial/full resistance to drugs.

@® Mutation results from (i) - copying errors, (i) - taking
antiretroviral drugs
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More insights from my work

HIV model with mutation

HIV model
with
competing
strains
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More insights from my work

Necessary conditions

Theorem 2.1.  The uninfected steady-state of the system (1)-(3) is
locally asymptotically stable for N; < Ng%r and unstable for N; > Nz’ri,.r.
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More insights from my work

Sufficient conditions

Sufficient conditions

NS = iy =)
it kH’WTDv
pu b (e = 1i)
N7 = max { T ' }

n n
iy =) it Mty =T Ty 2 bt
KuwTo = H?:Ikip“wi
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More insights from my work

Sufficient conditions

Theorem 2.2. The uninfected steady-state of the system of Eqs.
(1)=(3) is locally asymptotically stable and remains sero-negative for
N; < N <N°?

crit crit”
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More insights from my work

Numerical thresholds for viral fithess

Two strain numerical thresholds

AN P ——— 01 02 03 04 05 06 07 08 09 1
01 02 03 04 05 06 07 08 09 1
n

™ W,
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More insights from my work

Numerical thresholds for viral fithess
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More insights from my work

Numerical thresholds for viral fithess

Region specific simulations
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More insights from my work

Summary

@ Mutation implications regarding treatment - treatment of
one strain may promote selective pressure of the other one
as well as replicative fitness.

@® Wild type virus can co-exist with the mutant virus in a
switching dominance manner
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Stochastic version

Tools for model analysis

Feasibe region

T = a7—uT =BTV, (17)
I = BTV —(u+a)l, (18)
V = Nal-—pTV—puyV. (19)

® Feasible region

Q = {(TLV)eR30<T+I<Z0<V<—1"
H ) € Bl I ﬁ17r+uuv}

and solutions are bounded.
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Stochastic version

Tools for model analysis

Feasible region

¢ No solution paths leave through any boundary

e right sides of the model are smooth, so that initial value
problems have solutions that exist on maximal intervals

¢ Since paths cannot leave (2, solutions exist for all positive
time.

¢ the model is mathematically and biologically meaningful.

The concept of positive invariance ensures that positive
solutions are preserved both mathematically and biologically.
Cell populations under consideration are always positive or
nonnegative and thus mathematical solutions from the model "1
will have a biological meaning and predictions from i}:

mathematical solutions can be biologically validated. a
[m] = =
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Stochastic version

Tools for model analysis

Equilibria analysis

EO = (TQ,0,0), TO = %7

E* = (T*’ /*? V*)7

T — wTo

p+ Brvi(Ro — 1) (uv + B1To)’
g~ PR —1)To (v + b1To)

p+ Brv1(Ro — 1) (pv + B1To)’ N
Ve = v(Ro —1) (v + B1To). .
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Stochastic version

Tools for model analysis

Equilibria analysis

Eo = (T0,0,0),To = Z

E* — (7'*,/*7 V*)7

o — _#lo . p TN
N (n+ ) (A +p)’
1Tod (0 + u)) N
veo= (00 (N = Nggp) + :
(e e + 550 ) s .
5T, <y
A= m(N - Ncrit)- _unveRsITY_

ILL V(M —|— (S) JOHANNESBURG
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Stochastic version

Tools for model analysis

Threshold analysis: Next generation operator method

1. Procedure - Classify the classes into

e X- uninfected
® Y- infected but noninfectious
e 7-infected

X={T}, Y={0}, Z={lV}
2. Solve 9¥ = 0 to get Y*(Z) and substitute Y*(Z) into %
Since Y is an empty set, we just go straight to % system

V = Nal—p5TV—pyV. ‘(ZW;V

__UNIVERSITY
JOHANNESBURG
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Stochastic version

Tools for model analysis

Threshold analysis: Next generation operator method

3. Letd = (& (%)) Iore.

J = ( —0—p B1To >
N —(B1To+ pv)
4. Decompose J=M—-D, M>0, D>0, D-Diagonal
matrix.

J—(O B1T0)_<5+,U/ 0 >
~ 6N 0 0 (BiTo+pv) )’

0 51T0> (5-1-# 0
M = , D= Ay
<5N 0 0 (B1To+py) Pl
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Stochastic version

Tools for model analysis

Threshold analysis: Next generation operator method

5. Ry is the dorminant eigenvalues of MD".

1 0 0 Bl
D' = | o 1 , Mp ' =, GToEm) |
O @mmw St 0

_ ONBy Ty
Ry = pMD™' =
° ! \/ (6 +1)(B1 To + 1)

e Compare results with the computation using the next
genearation matrix method \{\w}‘
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Stochastic version

Tools for model analysis

Threshold analysis

The computation using the next generation matrix method
yields

3

(1 +a)(py + B1To)’ w

If Ry = 1 we get an equivalent critical Threshold

Noo — uta)(py+BiTo)
crit — )

aByTy
N

§R_O.

Ncrit
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Stochastic version

Tools for model analysis

T* MTO
p+ Bivi(Ro — 1) (uv + B1To)’

Biu(Ro — 1) To (v + B1 To)
p+ By (Ro — 1) (uv + B1To)’

V' = v(Ro— 1) (pv + 61 To).
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Stochastic version

Tools for model analysis

Eo = (T0,0,0),To = Z

E* — (7'*,/*7 V*)7

T = MTO * MTOA*
N (n+ ) (A +p)’
1 Tod Mv(5+u)>
veo= (2190 (N Ngy) +
(uv(ﬂ+5)( o) 5 T
uB19To
¥ ——————— (N = N_).
,U/V(M"_(S)( cr/t)
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Stochastic version

Tools for model analysis

Existence and Stability of Equilibria

@ E, exists for all .
® E* exists only for Ry > 1.

Equivalently,

© Lo exists for all N
@® E* exists only for N > Nt
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Stochastic version

Tools for model analysis

Existence and Stability of Equilibria

© Lo is locally asymptotically stable when Ry < 1 and
unstable when Ry > 1.

@® E~ is locally asymptotically stable when Ry > 1.
Equivalently,

© Lo is locally asymptotically stable when N < N and
unstable when N > Ngi;.

® E* is locally asymptotically stable when N > Ngi.

e SINE
JOHANNESBURG
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Stochastic version

Tools for model analysis

Stability of E,

The Jacobian matrix is given by

—VB—pu 0 -TB
JE) = ( V3 —0—u T8

-V N§  -TB-py
Evaluate at E = E

—p 0 —TB
J(Eo) = 0 —6—u BTo
0 N6 —BTo— py
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Stochastic version

Tools for model analysis

Stability of E,

The Characteristic equation

A+ )X+ (0 + i+ BTo+ )+ (5 + p)(BTo + pv)(1 — Ro) =0,

BONT,
O+ m)(BTo+ pv)

Ro =

OR

O+ )MV + (04 p+ BTo + )X + B To(Nerie — N) = 0,

§ To+ ity
Neit = ( +ﬂ)ﬁ(557_0+# )

0
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Stochastic version

Tools for model analysis

Stability of E,

The Eigenvalues

Moo= = A=
ay = o+p+pTo+p, ao—(5+ﬂ)(5To+uv)(1—§Ro)
OR

—a1+@/a$—4ao —a1 \/az 43
)‘1 = —M =

ar = S+u+BTo+ uy, 80—55To(Ncr/t—N)
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Stochastic version

Tools for model analysis

Stability of E,

For stability, we require \; < 0 or Re()\;) < 0.

A= —u<0,

—a; +/af — 4a

B

Ao = <0 Re(A23) <0

provided ay > 0, that is, Ry < 1.

OR
—a; +./a —4a
5 ! <0 Re(N23) <0

provided ay > 0, that is, N < N
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Stochastic version

Tools for model analysis

Stability of E,

Note that if g > 1.

—a; + /& — 4ag

B

Ao = >0
and Ey becomes unstable.
OR
—ay + /a8 — 4ag
Ao = >0

and Eg becomes unstable.
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Stochastic version

Tools for model analysis

Stability of E*

The Jacobian matrix evaluated at E*
—BV*—p 0 —BT*
J(E") = BV* —0—p BT*
A N6 =BT —py
Characteristic equation of J(E*)

X +eoXe+eX+c = 0,

where ] .

sessag SIS
JOHANNESBURG
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Stochastic version

Tools for model analysis

Stability of E*

a (aaBA + (A + p)(p+ wv)) + a1 (828 + A + p)

C = )
2 ax(A+p)
. (@B + (A + ) + &8 + a1 (@A + apB(p — N1) + (
a (A + p)
o~ (v (@At p(A+p)) +arfp - 3255MN1)
° a (A + p)
aj
a = ply, a=——,
1 plo, a o
0 L By
as = N — N , a4 = azao.
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Stochastic version

Tools for model analysis

Stability of E*; Use the R-Huwitz criterion

Exercise: Show that the cubic polynomial satisfy the
Routh-Hurwitz criterion.

c > 0,
c > 0,
cci—Ccp > 0.

UNIVERSITY
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Stochastic version

Tools for model analysis

Stability using Centre Mainfold theory

T = 7—uT =BTV,

I = BTV —(u+a)l—hIC,
V = pl—cV,

C = sl—uC.

\{ij
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Stochastic version

Tools for model analysis

Stability using Centre Mainfold theory: Equilibria
Ey=(T*,0,0,0), T*=~ and E=

(T,1,V,C) where

- chsu— Bp(u+a)) \/ c(hsu — ﬂp(u+a)))
252p? 26%p*

7 ﬁpu(T_ C(/Hra))’

Bp

hsc?s
B2p?
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Stochastic version

Tools for model analysis

Stability using Centre Mainfold theory: Equilibria

The uninfected steady state, Eo, exists for all values of Ry and
the infected steady state, E, exists only when Ry > 1.

Theorem

The infected steady-state, E, is locally asymptotically stable if
Ry > 1.

DS g
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Stochastic version

Tools for model analysis

Stability using Centre Mainfold theory: Equilibria

Introduce new variables xy =T, xo =1/, x3 =V, x4 = C and
rewrite the system of equations (32) - (??) as given below

X1 = fi=m—pxg—Bxixs,

X1 = h=pxix — (1 + a)x2 — hxaxa,
Xt = f3=pxz— CXs,

X-1 = f4 = SXo — [uX4.

Prof. Faraimunashe Chirove fchirove@uj.ac.za University of Johannessburg, Dept. of Mathematics and Applied


mailto:fchirove@uj.ac.za

Stochastic version

Tools for model analysis

Stability using Centre Mainfold theory: Equilibria

The Jacobian at the uninfected steady state

w0 —BT* 0
0 —(u+t T 0

JE) = | (’”‘p @) 5_0 o |- @
0 S 0 — 1

Choosing g as a bifurcation parameter when Ry = 1,

e C(pt )
o= f=""r
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Stochastic version

Tools for model analysis

Stability using Centre Mainfold theory: Equilibria

Replace g by 5* in (20)

— 0 —p*T* 0
o 0 —(p+ T+ 0
JED) = = (,Up @) ﬁ_c 0 (22)
0 S 0 —

Eigenvalues of J(E;) are (0, —p, —(¢ + p+a),—p). A=0is a
simple eigenvalue.
Right eigenvector associate with A = 0

)= (- (u+a) 1PI

(w1, Wo, W3, Wy s '3’ sc’

)
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Stochastic version

Tools for model analysis

Stability using Centre Mainfold theory: Equilibria

Right eigenvector associate with A =0

(n+a) p pp
Wi, Wo, W, Wp) = (——=, —, —/—, 1
( 1, W2, W3, 4) ( S 'S’ s¢’ )7

Left eigenvector associate with A = 0

p

—7170)7
M+ o

(V17 V2, V3, V4) = (07

UNIVERSITY
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Stochastic version

Tools for model analysis

Stability using Centre Mainfold theory: Equilibria

The nonzero partial derivatives of f; in equations (20) - (20),
where i = 1,2,3, 4 are given by

92fy 021y #L 0Pk

_ _ _BxT* _ — B*T*
0X4 an 8X38X1 b T ’ 0X4 3X3 0X30X4 s ’
P Ph h
OX20Xy - 0X40Xo - ’
2 2
Pho_ _p P
0x308* 0x303*
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Stochastic version

Tools for model analysis

Stability using Centre Mainfold theory: Equilibria

Proof.
Compute the parameters that determine the direction of the
bifurcation
T+ ps T 1 h
a = 26T vowyw, — 2h =-2 0
BT vawq Wy Wo Wy P cas? +M+Oé)< )

b = vowsT* > 0.

Since a < 0 and b > 0, the system exhibits a forward
bifurcation and the infected steady-state is locally
asymptotically stable whenever Ry > 1 but close to 1.
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Global stability

Proof.

Theorem

The uninfected steady state is Globally asymptotically stable for
Ry < 1.

E, is the only steady-state that exists when Ry < 1. Then
T<—u(T-T%), for T>0, V>0.
Define

T°° = lim sup T(¢).

t—oc0 o>t

Let T'(t) be an upper solution such that T'(t) > T(¢) for all
()
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Tools for model analysis

Global stability

Proof.

T'(t) is a solution to the inequality
TV < —(T'—T%), T'(0) =T~

T'(t) < T*, vt > 0.

T'(t) — T* as t — oo. Veg > 0, 3ty > 0 such that
T() < TU(t) < T*+ ¢ for t > ty. Thus T < T* + ¢.

T < T

Assume T cells is distributed by a small amount ¢q.
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Global stability

I < B(T"+e)V = (u+a)l, (24)

V = pl—cV. (25)

In matrix form,

($)§@<é),@=(—w;m AT +o)
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Global stability

Proof.

Choose M € Rt so that M > max{u + «, c}. The matrix
© + Miy, where I is a 2 x 2 identity matrix, is a strictly positive
matrix.

Let A1, Ao be the eigenvalues of ©, then A\ + M, \» + M are the
eigenvalues of © + Ml

Apply the Perron-Frobenious theorem on nonnegative matrices.
The matrix © + Ml has a simple positive eigenvalue equal to
the spectral radius and a corresponding positive eigenvector

(e > 0) implying that both Ay and X, are real.

Ly
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Global stability

Proof.

Choose \{ + M to be the dorminant eigenvalue of © + Ml
implying A1 > Ao, then e© = \je and Ay, A are roots of the
equation

Mi(c+p+a)r+ce(u+a)l—Role) = 0, (27)

where

pB(T* + <o)
R = — =7
0(60) C(N+ Oé)
All the coefficients of the quadratic equation (27) are positive '
when Ry(ep) < 1, and as ¢y — 0, we have Ry < 1. O
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Global stability

Proof.

Since the eigenvalues \{ and )\, are real and coefficients of
equation (27) are positive so when Ry < 1, then both Ay and X»
are negative.
For t > {, the inequality

d

g€ e @), V(D)) < Mee[l(), V(1)], (28)

holds.
Integrating the inequality yields

0 < ee[l(t), V(1) <es[i(t), V()eMt — (29) L

fort>t > fg. ]
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Global stability

Since e > 0, we conclude that
[I(t), V(t)] — (0,0) ast — oc. (30)

For the CTLs population, choose ¢; > 0 sufficiently small so
that there exist &, > t; such that /(t) < ¢; for t > . Hence,

C(t) < Se1 — ,U’Cv

where

As t — oo and letting e — 0, C(t) — 0.
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Global stability

Proof.

We have so far shown that as t — oo,

[I(t), V(t), C(t)] — (0,0,0) and T(t) — T*.

Now choose e > 0 (e2 < €1) sufficiently small so that for
t>t, V(i) <e.

T Z W—ﬁEQT—/LT,

and define
Too = lim inf T(¢).

t—00 $>0
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Global stability

Solving this inequality gives
T
Too > —i
pez + p
and letting eo — 0 we obtain that

Too > T (31)

We conclude that T, = T° = T* which means that T(t) — T*
as t — oo.

UL = I
JOHANNESBURG
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Basic within-host HIV dynamics with Immune
response: Exercise

T = a—uT =BTV =3,Tl,

(B1V + B2D)T = (pp+ @)l = hiTg,
Nal — pyV,

Tc = sl—puTe.

< -
Tl
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