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What is our interest?

• To understand the general principles of pathogen infection
and immune system response mechanisms.
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Basic Immune system response to pathogen

Innate (nonspecific) immune response
1 Innate (nonspecific) immune system response - first line

response.
• physical barriers - the skin,
• change in body environment - fever
• immmune cells - Macrophages, eosinophils, dentritic cells,

Natural Killer cells.

2 Cannot specifically recognize the physical structure of
the pathogen sense and react to the presence of an
invader.

3 Slow down initial growth pathogen but insufficient to clear
an infection.
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Basic Immune system response to pathogen

Adaptive (specific) immune response
1 Adaptive (specific) immune response - second line

response
2 Immune cells have receptors to recognize physical

structure of pathogen
3 Immune cells divide and expand - effectively fight the

pathogen - clearance may occur.
• CD4+ T cells - regulatory (helper)
• CD8+ T cells- effector response - directly fight pathogen.
• B Cells - effector response - Neutralising antibodies -

directly fight pathogen.
4 Pathogens - have epitopes recognized by immune cell

receptors - pathogen may have several epitopes.
5 Multiple adaptive responses may be required for one

pathogen.
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What is our interest?

• To understand the general principles, assumptions and
basic techniques used in mathematical models for
infectious diseases within the host, appreciate the value
and limits of mathematical models and explore the
behavior of different models.
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Mathematical model

• Mathematical model- a conceptual tool that uses the
language of mathematics to produce a more refined and
precise description of a system.
• - a set of equations describing the structure and interaction

of individuals in an area or region.
• Used to analyze experimental results and provide

predictions and suggestions for follow-up experiments.
• Can attempt to synthesize existing knowledge and provide

a theoretical framework for the interpretation of existing
paradigms.
• use of mathematical models instrumental in deepening our

understanding of infection.
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Model types

Influenced by the scientific question of concern - research
question?
• Deterministic models
• Stochastic models
• Statistical models
• many more
• The more assumptions put into the model, the harder it is

to be confident about the conclusions
• A well designed model can test different assumptions and

provide important new insights into questions that cannot
be readily answered experimentally.
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Process of modelling

Mathematical
Conclusion

Predictions/ Explanations

 Real World

 Questions?

 Model

− Variables 
− parameters
− interractions
  between
  variables and
  paramters

Test

Formulation

(Start with the simplest)

Analysis

Interpretation

− results answer question?
− Intrepret results
− describe potential possibilities
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Designing an in-host model

1 Specify the State variables
2 Specify the processes affecting the state variables.
3 Specify the process rates of the state variables.
4 Produce the dynamic equation specifying the state

variables’ change over time.
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In-host model with T helper cells only (e.g. HIV)

Ṫ = π − µT − β1TV ,
İ = β1TV − (µ+ α)I,

V̇ = NαI − β1TV − µV V .
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In-host model with T helper cells + Effector response
(e.g. HIV)

1 Cytotoxic T Lymphocytes (CTLs) proliferate - stimulated by
the pathogen.

2 CTLs - fights the virus population (killing infected cells).
3 Virus - CTLs interraction similar to predator-prey

dynamics in ecology.
4 CTLs (predator) and pathogen (prey).

Ṫ = π − µT − β1TV ,
İ = β1TV − (µ+ α)I − hc IC,

V̇ = NαI − β1TV − µV V ,
Ċ = ac IC − µcC.
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In-host model with T helper cells + Effector response
(e.g. HIV)

1 CTL expansion saturates as the number of CTL grows to
relatively high numbers.

Ṫ = π − µT − β1TV , (1)

İ = β1TV − (µ+ α)I − hc IC,
εC + 1

(2)

V̇ = NαI − β1TV − µV V , (3)

Ċ =
ac IC
εC + 1

− µcC. (4)

2 Saturation already occurs at lower numbers of CTL

İ = β1TV − (µ+ α)I − hc IC, (5)
Ċ = hc IC − µcC. (6)
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Modeling CD4 T cell help: CD4-APC-CTL pathway.

1 CD4+ T cell plus APCs = activated APCs.
2 Activated APCs + CTLs = Activated CTLs =⇒ clonal

expansion of CTLs.
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CD4-APC-CTL pathway reaction scheme

Let Th−CD4 T helper cells, A−APCs, T 8−CTLs, ∗−activated
state, ki−reaction constants and n−number of new CTLs.

Th + A
k1−⇀↽−
k2

ThA, (7)

ThA
k3−→ Th + A∗, (8)

T 8 + A∗
k4−⇀↽−
k5

T 8A∗, (9)

T8A∗
k6−→ (n + 1)T8 + A∗, (10)

A∗ k7−→ A. (11)
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CD4-APC-CTL pathway reaction scheme kinetics

Let []−concentrations of cell types.

d [A]

dt
= −k1[A][Th] + k2[ThA] + k7[A∗],

d [A∗]
dt

= k3[ThA]− k4[A∗][T 8] + k5[T 8A∗] + k6[T 8A∗]− k7[A∗],

d [Th]

dt
= −k1[A][Th] + k2[ThA] + k3[ThA],

d [T 8]

dt
= −k4[A∗][T 8] + k5[T8A∗] + k6(n + 1)[T 8A∗],

d [ThA]

dt
= k1[A][Th]− k2[ThA]− k3[ThA],

d [T 8A∗]
dt

= k4[A∗][T 8]− k5[T8A∗]− k6[T8A∗].
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CD4-APC-CTL pathway reaction scheme kinetics
simplifyting assumptions

• Kinetics of complexes [ThA] and [T 8A∗] are fast compared
to the other reactions - they go to their quasi-steady states

[ThA] =
k1

k2 + k3
[A][Th],

[T 8A∗] =
k4

k5 + k6
[A∗][T 8],

reducing the reaction kinetics to
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CD4-APC-CTL pathway reaction scheme kinetics
simplifyting assumptions

d [A]

dt
= −k1[A][Th] +

k1k2

k2 + k3
[A][Th] + k7[A∗],

d [A∗]
dt

=
k1k3

k2 + k3
[A][Th]− k4[A∗][T 8] +

k4(k5 + k6)

k5 + k6
[A∗][T8]

−k7[A∗],
d [Th]

dt
= −k1[A][Th] +

k1(k2 + k3)

k2 + k3
[A][Th],

d [T8]

dt
= −k4[A∗][T8] +

k4(k5 + k6(n + 1))

k5 + k6
[A∗][T8],
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CD4-APC-CTL pathway reaction scheme kinetics
simplifyting assumptions

d [A]

dt
= − k1k3

k2 + k3
[A][Th] + k7[A∗],

d [A∗]
dt

=
k1k3

k2 + k3
[A][Th]− k7[A∗],

d [Th]

dt
= 0,

d [T 8]

dt
= n

k4k6

k5 + k6
[A∗][T 8],
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CD4-APC-CTL pathway reaction scheme kinetics
simplifyting assumptions

• Note that [Th] is constant
• Let T = [Th] + [ThA]− total number of CD4 T helper cells.
• Number of helper cells in [ThA] much smaller than number

of free [Th] so that T = [Th] + [ThA]

d [A]

dt
= − k1k3T

k2 + k3
[A] + k7[A∗],

d [A∗]
dt

=
k1k3T
k2 + k3

[A]− k7[A∗],

d [T 8]

dt
= n

k4k6

k5 + k6
[A∗][T8],
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CD4-APC-CTL pathway reaction scheme kinetics
simplifyting assumptions

• Note also that at quasisteady state

[ThA] =
k1T

k2 + k3
[A],

[T 8A∗] =
k4

k5 + k6
[A∗][T 8],

• Let Ac = [A] + [A∗] + k1T
k2+k3

[A] + k4
k5+k6

[A∗][T8]− total
number of APCs.

[A∗] =
k1k3TAc

k7(k2 + k3) + k1k3T
(

1 + k4[T8]
k5+k6

)
+ k1k7T
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CD4-APC-CTL pathway reaction scheme kinetics
simplifyting assumptions

[A∗] =
εTAc

1 + εT (1 + σ[T 8]) + ρT

• ε =
k1k3

k2 + k3
− net reaction constant of APC activation.

• σ =
k4

k5 + k6
−proportionality constant for CTL-APC

complex

• ρ =
k1

k2 + k3
−proportionality constant for TH-APC complex
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CD4-APC-CTL pathway reaction scheme kinetics
simplifyting assumptions

• Let C = [T 8] + [T 8A∗]−total number of CTLS.
• The number of CTL in [T 8A∗] is negligible, then C = [T 8]

• Proliferation rate of CTL’s is given by

γεTAcC
1 + εT (1 + σC) + ρT

• γ = n
k4k6

k5 + k6
−net reaction constant for CTL activation.
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CD4-APC-CTL pathway reaction scheme kinetics
simplifyting assumptions

• Assume that amount of CD4 help is constant, i.e. T is
constant. The proliferation function reduces to

α1AcC
α2 + C

• Assume that amount of CD4 help is small and vanishes.
The proliferation function reduces to

γεTAcC

• Using the quasi-steady state assumption k2 + k3 >> k1
and k5 + k6 >> k4, we can ignore σ and ρ. The

proliferation function reduces to
γεTAcC
1 + εT
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HIV infection in CD4+ T cells and Other immune cells

• Langerhans cells - the skin epidermis, the anal and vaginal
mucosa, and the male foreskin.
• capture and destroy HIV or can get infected by HIV.

L̇ = λl − µlL−
β1V

A + L
L− β2L(Li + Ti)

A + L
, (12)

Ṫ = π − µT − β3LiT − β4TI − β5TV , (13)

L̇i =
β1V

A + L
L +

β2L(Li + Ti)

A + L
− µlLi , (14)

İ = β3LiT + β4TI + β5TV − (µ+ α)I, (15)

V̇ = NαI − φVL
A + L

− µV V . (16)
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Summary

1 Established three subreproduction ratios,
(i) cycle from infected CD4+ T cells to free virus and back
to infected CD4+ T cells,
(ii) cycle from infected CD4+ T cells to infected Langerhans
cells and back to infected CD4+ T cells, and
(iii) cycle from infected CD4+ T cells to free virus to
infected Langerhans cells and back to infected CD4+ T
cells.

2 Degradation effects of Langerhans cells are countered by
the opposing viral lysis effects.

3 Focus on strategies that reduce the cell-free infection
towards both Langerhans cells and CD4+ T cells as well as
boost the degradation mechanisms of the Langerhans
cells towards the free virus.
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Incorporating constant treatment in HIV in-host models

L̇ = λl − µlL−
β1V

A + L
L− β2L(Li + Ti)

A + L
− σ1L,

Ṫ = π − µT − β3LiT − β4TI − β5TV − σ2T ,

L̇d = σ1L− µlLd −
β1(1− δεR)V

A + Ld
Ld −

β2(1− δεR)Ld (Li + Ti)

A + Ld
,

Ṫd = σ2Td − µTd − (1− εR)(β3Li + β4I + β5V )Td ,

L̇i =
β1V

A + L
L +

β2L(Li + Ti)

A + L
+
β1(1− δεR)V

A + Ld
Ld

+
β2(1− δεR)Ld (Li + Ti)

A + Ld
− (µl + ρ)Li ,
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Incorporating constant treatment in HIV in-host models

İ = (β3Li + β4I + β5V )(T + (1− δεR)Td )− (µ+ α)I,

V̇ = N(1− εp)αI + M(1− εp)ρLi −
φV (L + Ld )

A + L + Ld
− µV V .
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Incorporating time-varying treatment in HIV in-host
models

1 Pharmacokinetics - the kinetics of absorption, distribution
and elimination of drugs inside the body
• Minimum and maximum concentration of the drug
• dosage rate, half-life, time to max concentration

2 Drug concentration at the site of action is the most
important aspect but not feasible to routinely measure
clinically

3 Plasma/blood concentration widely used - linear
relationship between plasma concentration and
site-of-action concentration.
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Drug concentration

C(t) =


Cmin + (Cmax−Cmin)(1−e−t )

1−e−Tmax , t ∈ [ti ,Tmax ],

Cmaxe−k(t−Tmax ), t ∈ [Tmax , τ + ti ].

Efficacy functions

ε(t) =
C(t)

IC50 + C(t)
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Summary

1 Periodic drug holidays are more effective if the time
duration of the drug holidays is shorter
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Some connection of HIV in-host model and population
dynamics
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Full linked model

dL
dt

= π − (ωλ1 + µ)L,

dLT

dt
= ωλ1L− (µ+ γ)LT ,

dLI

dt
= γLT − (µ+ δ)LI ,

dC
dt

= π4 − (λ2 + µ4)C,

dCL

dt
= λ2C − (µ4 + γ4)CL,

dCI

dt
= γ4CL − (µ4 + ρ)CI ,
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Full linked model continued

dVR5

dt
= (1− (ζc + ζl))p(I + η0A) + ρ(1− φ)MCI

+δεNLI − (µv + ωαL)VR5,

dVX4

dt
= (ζc + ζl)pc(I + η0A) + ρφMCI + δ(1− ε)NLI

−(µv + ωαL)VX4,

dS
dt

= Λ0 − λ3S − d0S,

dI
dt

= λ3S − (d0 + γ0)I,

dA
dt

= γ0I − (d0 + δ0)A,
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Full linked model continued

λ1 = β1(VR5 + η3VX4 + η2CI + η1LI),

λ2 = β2(VX4 + σ3VR5 + σ2CI + σ1LI),

λ3 =
β3(ηbVX4 + (1− ηb)VR5)(I + η0A)

N0
.
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Balanced time scales for within host dynamics and
population dynamics

Prof. Faraimunashe Chirove fchirove@uj.ac.za University of Johannessburg, Dept. of Mathematics and Applied mathematics

mailto:fchirove@uj.ac.za


Introduction to In-host modelling and model design
Introduction to model design
More insights from my work

Tools for model analysis

Simulations before and after linking
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Summary

1 Results suggest that ignoring the differences in time scales
may lead to underestimation of the impact of the infection.

2 Within the host - there is potential to increase the viral load
whilst decreasing the CD4 count within the host.

3 At population level- members of infected and AIDS
individuals increase.

4 The direct linking can also be used for all infectious
diseases that can be transmitted directly.
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HIV Mutation within the host

1 HIV known for error-prone replication - mutation -
partial/full resistance to drugs.

2 Mutation results from (i) - copying errors, (ii) - taking
antiretroviral drugs
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HIV model with mutation
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Necessary conditions
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Sufficient conditions
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Sufficient conditions
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Numerical thresholds for viral fitness

Prof. Faraimunashe Chirove fchirove@uj.ac.za University of Johannessburg, Dept. of Mathematics and Applied mathematics

mailto:fchirove@uj.ac.za


Introduction to In-host modelling and model design
Introduction to model design
More insights from my work

Tools for model analysis

Numerical thresholds for viral fitness
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Numerical thresholds for viral fitness
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Summary

1 Mutation implications regarding treatment - treatment of
one strain may promote selective pressure of the other one
as well as replicative fitness.

2 Wild type virus can co-exist with the mutant virus in a
switching dominance manner
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Stochastic version

Feasibe region

Ṫ = π − µT − β1TV , (17)
İ = β1TV − (µ+ α)I, (18)

V̇ = NαI − β1TV − µV V . (19)

• Feasible region

Ω = {(T , I,V ) ∈ R3
+|0 < T + I ≤ π

µ
,0 ≤ V ≤ Nαπ

β1π + µµV
}.

Theorem

The positive orthant Ω is positively invariant for the system (20)
and solutions are bounded.
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Stochastic version

Feasible region

• No solution paths leave through any boundary
• right sides of the model are smooth, so that initial value

problems have solutions that exist on maximal intervals
• Since paths cannot leave Ω, solutions exist for all positive

time.
• the model is mathematically and biologically meaningful.

The concept of positive invariance ensures that positive
solutions are preserved both mathematically and biologically.
Cell populations under consideration are always positive or
nonnegative and thus mathematical solutions from the model
will have a biological meaning and predictions from
mathematical solutions can be biologically validated.
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Stochastic version

Equilibria analysis

E0 = (T0,0,0),T0 =
π

µ
,

E∗ = (T ∗, I∗,V ∗),

T ∗ =
µT0

µ+ β1ν1(<0 − 1) (µV + β1T0)
,

I∗ =
β1µ(<0 − 1)T0 (µV + β1T0)

µ+ β1ν1(<0 − 1) (µV + β1T0)
,

V ∗ = ν1(<0 − 1) (µV + β1T0) .
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Stochastic version

Equilibria analysis

E0 = (T0,0,0),T0 =
π

µ
,

E∗ = (T ∗, I∗,V ∗),

T ∗ =
µT0

λ∗ + µ
, I∗ =

µT0λ
∗

(µ+ δ)(λ∗ + µ)
,

V ∗ =

(
µT0δ

µV (µ+ δ)
(N − Ncrit ) +

µV (δ + µ)

β1T0δ

)
λ∗

(λ∗ + µ)
,

λ∗ =
µβ1δT0

µV (µ+ δ)
(N − Ncrit ).
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Stochastic version

Threshold analysis: Next generation operator method

1. Procedure - Classify the classes into
• X - uninfected
• Y - infected but noninfectious
• Z - infected

X = {T}, Y = {∅}, Z = {I,V}.
2. Solve dY

dt = 0 to get Y ∗(Z ) and substitute Y ∗(Z ) into dZ
dt .

Since Y is an empty set, we just go straight to dZ
dt system.

İ = β1TV − (µ+ α)I,
V̇ = NαI − β1TV − µV V .
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Stochastic version

Threshold analysis: Next generation operator method

3. Let J =
(
∂
∂Z

(dZ
dt

))
|DFE .

J =

(
−δ − µ β1T0
δN −(β1T0 + µV )

)
4. Decompose J = M − D, M ≥ 0, D ≥ 0, D-Diagonal

matrix.

J =

(
0 β1T0
δN 0

)
−
(
δ + µ 0

0 (β1T0 + µV )

)
,

M =

(
0 β1T0
δN 0

)
, D =

(
δ + µ 0

0 (β1T0 + µV )

)
,
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Stochastic version

Threshold analysis: Next generation operator method

5. <0 is the dorminant eigenvalues of MD−1.

D−1 =

(
1

δ+µ 0
0 1

(β1T0+µV )

)
, MD−1 =

(
0 β1T0

(β1T0+µV )
δN
δ+µ 0

)
,

<0 = ρMD−1 =

√
δNβ1T0

(δ + µ)(β1T0 + µV )

• Compare results with the computation using the next
genearation matrix method
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Stochastic version

Threshold analysis

The computation using the next generation matrix method
yields

<0 =
αβ1NT0

(µ+ α) (µV + β1T0)
, T0 =

π

µ
,

If <0 = 1 we get an equivalent critical Threshold

Ncrit =
(µ+ α) (µV + β1T0)

αβ1T0
,

Ncrit =
N
<0
.
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Stochastic version

Recall

E0 = (T0,0,0),T0 =
π

µ
,

E∗ = (T ∗, I∗,V ∗),

T ∗ =
µT0

µ+ β1ν1(<0 − 1) (µV + β1T0)
,

I∗ =
β1µ(<0 − 1)T0 (µV + β1T0)

µ+ β1ν1(<0 − 1) (µV + β1T0)
,

V ∗ = ν1(<0 − 1) (µV + β1T0) .
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Stochastic version

Recall

E0 = (T0,0,0),T0 =
π

µ
,

E∗ = (T ∗, I∗,V ∗),

T ∗ =
µT0

λ∗ + µ
, I∗ =

µT0λ
∗

(µ+ δ)(λ∗ + µ)
,

V ∗ =

(
µT0δ

µV (µ+ δ)
(N − Ncrit ) +

µV (δ + µ)

β1T0δ

)
λ∗

(λ∗ + µ)
,

λ∗ =
µβ1δT0

µV (µ+ δ)
(N − Ncrit ).
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Stochastic version

Existence and Stability of Equilibria

Theorem
1 E0 exists for all <0.

2 E∗ exists only for <0 > 1.

Equivalently,

Theorem
1 E0 exists for all N
2 E∗ exists only for N > Ncrit .
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Stochastic version

Existence and Stability of Equilibria

Theorem
1 E0 is locally asymptotically stable when <0 < 1 and

unstable when <0 > 1.
2 E∗ is locally asymptotically stable when <0 > 1.

Equivalently,

Theorem
1 E0 is locally asymptotically stable when N < Ncrit and

unstable when N > Ncrit .

2 E∗ is locally asymptotically stable when N > Ncrit .
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Stochastic version

Stability of E0

Proof.
The Jacobian matrix is given by

J(E) =

 −Vβ − µ 0 −Tβ
Vβ −δ − µ Tβ
−Vβ Nδ −Tβ − µv


Evaluate at E = E0

J(E0) =

 −µ 0 −Tβ
0 −δ − µ βT0
0 Nδ −βT0 − µv


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Stochastic version

Stability of E0

Proof.
The Characteristic equation

(λ+ µ)(λ2 + (δ + µ+ βT0 + µv )λ+ (δ + µ)(βT0 + µv )(1−<0) = 0,

<0 =
βδNT0

(δ + µ)(βT0 + µv )
.

OR

(λ+ µ)(λ2 + (δ + µ+ βT0 + µv )λ+ βδT0(Ncrit − N) = 0,

Ncrit = (δ+µ)(βT0+µv )
βδT0
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Stochastic version

Stability of E0

Proof.
The Eigenvalues

λ1 = −µ, λ2 =
−a1 +

√
a2

1 − 4a0

2
, λ3 =

−a1 −
√

a2
1 − 4a0

2
,

a1 = δ + µ+ βT0 + µv , a0 = (δ + µ)(βT0 + µv )(1−<0)

OR

λ1 = −µ, λ2 =
−a1 +

√
a2

1 − 4a0

2
, λ3 =

−a1 −
√

a2
1 − 4a0

2
,

a1 = δ + µ+ βT0 + µv , a0 = βδT0(Ncrit − N)
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Stochastic version

Stability of E0

Proof.
For stability, we require λi < 0 or Re(λi) < 0.

λ1 = −µ < 0,

λ2,3 =
−a1 ±

√
a2

1 − 4a0

2
< 0 Re(λ2,3) < 0

provided a0 > 0, that is, <0 < 1.
OR

λ2,3 =
−a1 ±

√
a2

1 − 4a0

2
< 0 Re(λ2,3) < 0

provided a0 > 0, that is, N < Ncrit
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Stochastic version

Stability of E0

Proof.
Note that if <0 > 1.

λ2 =
−a1 +

√
a2

1 − 4a0

2
> 0

and E0 becomes unstable.
OR
if N > Ncrit

λ2 =
−a1 +

√
a2

1 − 4a0

2
> 0

and E0 becomes unstable.
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Stochastic version

Stability of E∗

Proof.
The Jacobian matrix evaluated at E∗

J(E∗) =

 −βV ∗ − µ 0 −βT ∗

βV ∗ −δ − µ βT ∗

−βV ∗ Nδ −βT ∗ − µv


Characteristic equation of J(E∗)

X 3 + c2X 2 + c1X + c0 = 0,

where
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Stochastic version

Stability of E∗

Proof.

c2 =
a2 (a4βλ+ (λ+ µ)(µ+ µv)) + a1 (a2β + λ+ µ)

a2(λ+ µ)
,

c1 =
a2µv (a4βλ+ µ(λ+ µ)) + a2

1β + a1 (a4βλ+ a2β(µ− δN1) + (λ+ µ)(µ+ µv))

a2(λ+ µ)
,

c0 =
a1 (µv (a4βλ+ µ(λ+ µ)) + a1βµ− a2βδµN1)

a2(λ+ µ)
,

a1 = µT0, a2 =
a1

µ+ δ
,

a3 =
δ

µV
(N − Ncrit ) +

µµV

δβ1
, a4 = a3a2.
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Stochastic version

Stability of E∗; Use the R-Huwitz criterion

Proof.
Exercise: Show that the cubic polynomial satisfy the
Routh-Hurwitz criterion.

c0 > 0,
c2 > 0,

c2c1 − c0 > 0.
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Stochastic version

Stability using Centre Mainfold theory

Ṫ = π − µT − βTV ,
İ = βTV − (µ+ α)I − hIC,

V̇ = pI − cV ,
Ċ = sI − µC.
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Stochastic version

Stability using Centre Mainfold theory: Equilibria

E0 = (T ∗,0,0,0), T ∗ =
π

µ
and Ē = (T̄ , Ī, V̄ , C̄) where

T̄ = −chsµ− βp(µ+ α))

2β2p2 +

√(
− c(hsµ− βp(µ+ α))

2β2p2

)2

+
hsc2π

β2p2µ
,

Ī =
βpµ
hsc

(
T̄ − c(µ+ α)

βp

)
,

V̄ =
βp2µ

hsc2

(
T̄ − c(µ+ α)

βp

)
,

C̄ =
βp
hc

(
T̄ − c(µ+ α)

βp

)
.
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Stochastic version

Stability using Centre Mainfold theory: Equilibria

Theorem
The uninfected steady state, E0, exists for all values of R0 and
the infected steady state, Ē , exists only when R0 > 1.

Theorem

The infected steady-state, Ē , is locally asymptotically stable if
R0 > 1.
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Stochastic version

Stability using Centre Mainfold theory: Equilibria

Proof.
Introduce new variables x1 = T , x2 = I, x3 = V , x4 = C and
rewrite the system of equations (32) - (??) as given below

ẋ1 = f1 = π − µx1 − βx1x3,

ẋ1 = f2 = βx1x2 − (µ+ α)x2 − hx2x4,

ẋ1 = f3 = px2 − cx3,

ẋ1 = f4 = sx2 − µx4.
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Stochastic version

Stability using Centre Mainfold theory: Equilibria

Proof.
The Jacobian at the uninfected steady state

J(E0) =


−µ 0 −βT ∗ 0
0 −(µ+ α) βT ∗ 0
0 p −c 0
0 s 0 −µ

 . (20)

Choosing β as a bifurcation parameter when R0 = 1,

β = β∗ =
c(µ+ α)

pT ∗
. (21)
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Stochastic version

Stability using Centre Mainfold theory: Equilibria

Proof.
Replace β by β∗ in (20)

J(E∗0 ) =


−µ 0 −β∗T ∗ 0
0 −(µ+ α) β∗T ∗ 0
0 p −c 0
0 s 0 −µ

 . (22)

Eigenvalues of J(E∗0 ) are (0,−µ,−(c + µ+ α),−µ). λ = 0 is a
simple eigenvalue.
Right eigenvector associate with λ = 0

(w1,w2,w3,w4) = (−(µ+ α)

s
,
µ

s
,
pµ
sc
,1),

Left eigenvector associate with λ = 0

(v1, v2, v3, v4) = (0,
p

µ+ α
,1,0),
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Stochastic version

Stability using Centre Mainfold theory: Equilibria

Proof.
Right eigenvector associate with λ = 0

(w1,w2,w3,w4) = (−(µ+ α)

s
,
µ

s
,
pµ
sc
,1),

Left eigenvector associate with λ = 0

(v1, v2, v3, v4) = (0,
p

µ+ α
,1,0),
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Stability using Centre Mainfold theory: Equilibria

Proof.
The nonzero partial derivatives of fi in equations (20) - (20),
where i = 1,2,3,4 are given by

∂2f1
∂x1∂x3

=
∂2f1

∂x3∂x1
= −β∗T ∗, ∂2f2

∂x1∂x3
=

∂2f2
∂x3∂x1

= β∗T ∗,

∂2f2
∂x2∂x4

=
∂2f2

∂x4∂x2
= −h,

∂2f1
∂x3∂β∗

= −T ∗,
∂2f2

∂x3∂β∗
= T ∗.

a = 2β∗T ∗v2w1w2 − 2hw2w4 = −2pµ(
pβ∗T ∗µ

cds2 +
h

µ+ α
) < 0,

b = v2w3T ∗ > 0.
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Stability using Centre Mainfold theory: Equilibria

Proof.
Compute the parameters that determine the direction of the
bifurcation

a = 2β∗T ∗v2w1w2 − 2hw2w4 = −2pµ(
pβ∗T ∗µ

cds2 +
h

µ+ α
) < 0,

b = v2w3T ∗ > 0.

Since a < 0 and b > 0, the system exhibits a forward
bifurcation and the infected steady-state is locally
asymptotically stable whenever R0 > 1 but close to 1.
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Global stability

Proof.

Theorem
The uninfected steady state is Globally asymptotically stable for
R0 < 1.

E0 is the only steady-state that exists when R0 < 1. Then

Ṫ ≤ −µ(T − T ∗), for T > 0, V ≥ 0.

Define
T∞ = lim

t→∞
sup
φ≥t

T (φ).

Let T 1(t) be an upper solution such that T 1(t) ≥ T (t) for all
t ≥ 0.
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Global stability

Proof.

T 1(t) is a solution to the inequality

Ṫ 1 ≤ −µ(T 1 − T ∗), T 1(0) = T ∗.

T 1(t) ≤ T ∗, ∀t > 0.

T 1(t)→ T ∗ as t →∞. ∀ε0 > 0, ∃t0 > 0 such that
T (t) ≤ T 1(t) ≤ T ∗ + ε0 for t ≥ t0. Thus T∞ ≤ T ∗ + ε0.

T∞ ≤ T ∗. (23)

Assume T cells is distributed by a small amount ε0.
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Global stability

Proof.

İ ≤ β(T ∗ + ε0)V − (µ+ α)I, (24)

V̇ = pI − cV . (25)

In matrix form,(
İ
V̇

)
≤ Θ

(
İ
V̇

)
, Θ =

(
−(µ+ α) β(T ∗ + ε0)

p −c

)
. (26)
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Global stability

Proof.
Choose M ∈ R+ so that M > max{µ+ α, c}. The matrix
Θ + MI2, where I2 is a 2× 2 identity matrix, is a strictly positive
matrix.
Let λ1, λ2 be the eigenvalues of Θ, then λ1 + M, λ2 + M are the
eigenvalues of Θ + MI2
Apply the Perron-Frobenious theorem on nonnegative matrices.
The matrix Θ + MI2 has a simple positive eigenvalue equal to
the spectral radius and a corresponding positive eigenvector
(e > 0) implying that both λ1 and λ2 are real.
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Global stability

Proof.
Choose λ1 + M to be the dorminant eigenvalue of Θ + MI2
implying λ1 > λ2, then eΘ = λ1e and λ1, λ2 are roots of the
equation

λ2 + (c + µ+ α)λ+ c(µ+ α)(1− R0(ε0)) = 0, (27)

where

R0(ε0) =
pβ(T ∗ + ε0)

c(µ+ α)
.

All the coefficients of the quadratic equation (27) are positive
when R0(ε0) < 1, and as ε0 → 0, we have R0 < 1.

Prof. Faraimunashe Chirove fchirove@uj.ac.za University of Johannessburg, Dept. of Mathematics and Applied mathematics

mailto:fchirove@uj.ac.za


Introduction to In-host modelling and model design
Introduction to model design
More insights from my work

Tools for model analysis

Stochastic version

Global stability

Proof.
Since the eigenvalues λ1 and λ2 are real and coefficients of
equation (27) are positive so when R0 < 1, then both λ1 and λ2
are negative.
For t ≥ t0, the inequality

d
dt

(e • [I(t),V (t)]) ≤ λ1e • [I(t),V (t)], (28)

holds.
Integrating the inequality yields

0 ≤ e • [I(t),V (t)] ≤ e • [I(t),V (t)]eλ1(t−t1), (29)

for t ≥ t1 ≥ t0.
Prof. Faraimunashe Chirove fchirove@uj.ac.za University of Johannessburg, Dept. of Mathematics and Applied mathematics

mailto:fchirove@uj.ac.za


Introduction to In-host modelling and model design
Introduction to model design
More insights from my work

Tools for model analysis

Stochastic version

Global stability

Proof.
Since e > 0, we conclude that

[I(t),V (t)] → (0,0) as t→∞. (30)

For the CTLs population, choose ε1 > 0 sufficiently small so
that there exist t2 ≥ t1 such that I(t) ≤ ε1 for t ≥ t2. Hence,

˙C(t) ≤ sε1 − µC,

where
C(t) ≤ sε1

µ
+ (C(t2)− sε1

µ
)eµ(t2−t).

As t →∞ and letting ε1 → 0, C(t)→ 0.
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Global stability

Proof.
We have so far shown that as t →∞,
[I(t),V (t),C(t)]→ (0,0,0) and T (t)→ T ∗.
Now choose ε2 > 0 (ε2 < ε1) sufficiently small so that for
t > t2, V (t) ≤ ε2.

Ṫ ≥ π − βε2T − µT ,

and define
T∞ = lim

t→∞
inf
φ≥0

T (φ).
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Global stability

Proof.
Solving this inequality gives

T∞ ≥
π

βε2 + µ
,

and letting ε2 → 0 we obtain that

T∞ ≥ T ∗. (31)

We conclude that T∞ = T∞ = T ∗ which means that T (t)→ T ∗

as t →∞.
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Basic within-host HIV dynamics with Immune
response: Exercise

Ṫ = π − µT − β1TV − β2TI, (32)
İ = (β1V + β2I)T − (µ+ α)I − hITC , (33)

V̇ = NαI − µV V , (34)
ṪC = sI − µTC . (35)
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